google.com, pub-5261878156775240, DIRECT, f08c47fec0942fa0 Integrated Knowledge Solutions

Understanding Loss Functions for Training Classifiers

Originally published on February 24, 2023

Building a classification model with a collection of annotated training examples requires making the following choices:

  • Classification model
    • This implies whether you should be using a logistic classifier or a multilayer neural network or a convolutional neural network or any other suitable model
  • Loss function
    • A loss function provides a measure of how well the training is proceeding and is needed to adjust the parameters of the classification model being trained. The choice of a loss function depends upon whether the model is being trained for a binary classification task or the number of classes is many.
  • Optimizer
    • The training involves optimizing the chosen loss function by repeatedly going over the training examples to adjust the model parameters. Again, there are several optimizers available in all popular machine learning and deep learning libraries to choose from.

In this blog post, I will focus on three commonly used loss functions for classification to give you a better understanding of these loss functions. These are:

  • Cross Entropy Loss
  • Binary Cross Entropy Loss
  • Negative Log-likelihood Loss

What is Cross Entropy?

Let’s first understand entropy which measures uncertainty of an event. We start by using C to represent a random event/variable which takes on different possible class labels as values in a training set. We use $p(c_i)$ to represent the probability that the class label of a training example is $c_i$, i.e. C equals $c_i$ with probability p. The entropy of the training set labels can be then expressed as below where the summation is carried over all possible labels:

$E(C) = -\sum_i p(c_i)$

It is easy to see that if all training examples are from the same class, then the entropy is zero, and there is no uncertainty about the class label of any training example picked at random. On the other hand, if the training set contains more than one class label, then we have some uncertainty about the class label of a randomly picked training example. As an example, suppose our training data has four labels: cat, dog, horse, and sheep. Let the mix of labels in our training data be cat 40%, dog 10%, horse 25%, and sheep 25%. Then the entropy of the training set using the natural log is given by

Entropy of our Training Set = -(0.4 log0.4 + 0.1log0.1 + 0.25log0.25 +   0.25log0.25 = 1.29

The entropy of a training set will achieve its maximum value when there are equal number of training examples from each category.

Let’s consider another random variable $\hat C$ which denotes the labels predicted by the model for a training example. Now, we have two sets of label distributions, one of true (target) labels in the training set and another of predicted labels. One way to compare these two label distributions is to extend the idea of entropy to cross entropy. It is defined as

$H(C,\hat{C}) = -\sum_i p(c_i)\log p(\hat{c}_i)$

Note that the cross entropy is not a symmetric function. Suppose the classifier that you have trained produces the following distribution of predicted labels: cat 30%, dog 15%, horse 25%, and sheep 30%. The cross entropy of the target and the predicted labels distribution is then given by

Cross Entropy(target labels, predicted labels) = -(0.4log0.3+ 0.1log0.15 + 0.25log0.25 +   0.25log0.3 = 1.32

The difference between the cross entropy value of 1.32 and the entropy of target labels of 1.29 is a measure of how close the predicted label distribution is to the target distribution.

While you are looking at your classifier, your friend pops in to tell you how well his classifier is doing. His classifier is producing the following distribution of predicted labels: cat 30%, dog 20%, horse 20%, and sheep 30%. You look at his numbers and tell him that your classifier is better that his because the cross entropy measure of your classifier, 1.32, is closer to the target entropy of 1.29 than the cross entropy measure of 1.35 of his classifier.

Cross Entropy Loss

The above definition of cross entropy is good for comparing two distributions or classifiers at a global level. However, we are interested in having a measure at the training examples level so that it can be used to adjust the parameters of the classifier being trained. To see how the above concept of cross entropy can be applied to each and every training example, let’s consider a training example inputted to a 3-class classifier to classify images of cats, dogs, and horses. The training example is of a horse. Using one-hot encoding for class labels, the target vector for the input image of the horse will be [0, 0, 1]. Since it is a 3-class problem, the classifier has three outputs as depicted below. where the output of the softmax stage is a vector of probabilities. Note that the classifier output is a vector of numbers, called logits. These are converted to a vector of probabilities by the softmax function as shown.


Thus, we have two sets of probabilities: one given by the target vector t and the second given by the output vector o. We can thus use the cross entropy measure defined earlier to express the cross entropy loss. Plugging in the numbers, the cross entropy loss value is calculated as

-(0*log(0.275) + 0*log(0.300) + 1*log(0.425)) -> 0.856

You can note that this loss would tend towards zero if the output probability for the class label horse goes up. This means that if our classifier is making correct predictions with increasing probabilities, the cross entropy loss will be small.

Since batches of training vectors are inputted at any training instance, the cross entropy loss for the batch is found by summing the loss over all examples.

While using the cross entropy loss in PyTorch, you do not need to worry about the softmax calculations. The cross entropy loss function in PyTorch takes logits as input and thus has a built-in softmax function. You can use the loss function for a single example or for a batch. The following example illustrates the use of cross entropy loss function for a single example.

import torch
import torch.nn.functional as F
out = torch.tensor([3.05, 3.13, 3.48])
target = torch.tensor([0.0, 0.0, 1.0])
loss =F.cross_entropy(out,target)
print(loss)
tensor(0.8566)

Binary Cross Entropy (BCE) Loss

Let’s consider a training model for a two-class problem. Let’s input an example from class 1 to the model, i.e the correct label is y = 1. The model predicts with probability p the input class label to be 1. The probability for the input class label not being 1 is then 1-p. The following formula captures the binary cross entropy loss for this situation:

$BCELoss = -(y*log(p) + (1-y)*log(1-p))$

Assuming p equal to 0.75, the BCELoss is 0.287. It is easy to see that when the predicted probability p approaches 1, the loss approaches 0.

loss = nn.BCELoss()
out= loss(torch.tensor([0.75]),torch.tensor([1.0]))
print(out)
tensor(0.2877)

The BCELoss function is generally used for binary classification problems. However, it can be used for multi-class problems as well. The BCELoss formula for C classes is then expressed as shown below where $y_k$ is the target vector component and $p_k$ is the predicted probability for class k.

$BCELoss = -\frac{1}{C}\sum_k (y_k * log(p_k) + (1-y_k)*log(1-p_k))$

Let’s use the above formula with a three-class problem where the predicted probabilities for an input for three classes are [0.277, 0.299, 0.424]. The training example is from class 3. The target tensor in this case is then [0.0,0.0,1.0]. The BCELoss value for this situation will be then

-(log(1-0.277) + log(1-0.299) + log(0.424))/3 –> 0.5125

We will now use the BCELoss function to validate our calculation.

out = loss(torch.tensor([0.277, 0.299, 0.424]), torch.tensor([0.0,0.0,1.0]))
print(out)
tensor(0.5125)

Note that the first argument in BCELoss() is a tensor of probabilities and the second argument is the target tensor. This means that the model should output probabilities. Often the output layer has the Relu function as the activation function. In such cases, Binary cross entropy with logits loss function should be used which converts the Relu output to probabilities before calculating the loss. This is shown below in the example where the first argument is a tensor of Relu output values. The calulations of the probabilities is also shown using the sigmoid function. You can use these probabilities in the BCELoss function to check whether you get the same loss value or not via these two different calculations.

loss = nn.BCEWithLogitsLoss()
out = loss(torch.tensor([1.8, 0.75]),torch.tensor([1.0,0.0]))
print (out)
print(torch.sigmoid(torch.tensor([1.8,0.75])))# Will output class probabilities
tensor(0.6449)
tensor([0.8581, 0.6792])

If we input the probabilities calculated above using the sigmoid function in the BCELoss function, we should get the same loss value.

loss = nn.BCELoss()
out= loss(torch.tensor([0.858,0.679]),torch.tensor([1.0, 0.0]))
print(out)
tensor(0.6447)

Negative Log Likelihood Loss

The negative log-likelihood loss (NLLLoss in PyTorch) is used for training classification models with C classes. The likelihood means what are the chances that a given set of training examples, $X_1,X_2,⋯,X_n$ was generated by a model that is characterized by a set of parameters represented by 𝜽. The likelihood 𝐿 thus can be expressed as 

$𝐿(X_1,X_2,⋯,X_n|\theta)=𝑃(X_1,X_2,⋯,X_n|\theta)$. 

Assuming that all training examples are independent of each other, the right hand side of the likelihood 𝐿 expression can be written as

$𝐿(X_1,X_2,⋯,X_n|\theta)= \prod(𝑃(X_1|\theta)𝑃(X_2|\theta)...𝑃(X_n|\theta)$.

Taking the log of the likelihood converts the right hand side multiplications to a summation. Since we are interested in minimizing the loss, the negative of the log likelihood is taken as the loss measure. Thus

$-log𝐿(X_1,X_2,⋯,X_n|\theta) = -\sum_{i=1}^{n}log(𝑃(X_i|\theta)$

The input to the NLLLoss function is log probabilities of each class as a tensor. The size of the input tensor is (minibatch size, C). The target specified in the loss is a class index in the range [0,C−1] where C = number of classes. Let’s take a look at an example of using NLLLoss function.

loss = nn.NLLLoss()
input = torch.tensor([[-0.6, -0.50, -0.30]])# minibatch size is 1 in this example. The log probabilities are all negative as expected.
target = torch.tensor([1])
output = loss(input,target)
print(output)
tensor(0.5000)

It can be noted that the NLLLoss value in this case is nothing but the negative of the log probability of the target class. When the class probabilities are not directly available as usually is the case, the model output needs to go through the LogSoftmax function to get log probabilities.

m = nn.LogSoftmax(dim=1)
loss = nn.NLLLoss()
# input is of size N x C. N=1, C=3 in the example
input = torch.tensor([[-0.8956, 1.1171, 1.3302]])
# each element in target has to have 0 <= value < C
target = torch.tensor([1])
output = loss(m(input), target)
print(output)
tensor(0.8634)

The cross entropy loss and the NLLLoss are mathematically equivalent. The difference between the two arises in how these two loss functions are implemented. As I mentioned earlier the cross entropy loss function in Pytorch expects logits as input, and it includes a softmax function while calculating the cross entropy loss. In the case of NLLLoss, the function expects log probabilities as input. Lacking them, we need to use LogSoftmax function to get the log probabilities as shown above.

There are a few other loss functions available in PyTorch and you can check them at the PyTorch documentation site. I hope you enjoyed reading my explanation of different loss functions. Contact me if you have any question.


Graph Classification using Graph Neural Networks

Graph classification focuses on assigning labels or categories to entire graphs or networks. Unlike traditional classification tasks that deal with individual data instances, graph classification considers the entire graph structure, including nodes, edges and their properties. A graph classifier uses a mapping function that can accurately predict the class or label of an unseen graph based on its structural properties. The mapping function is learned during training using supervised learning.

Why Do We Need Graph Classification?

The importance of graph classification lies in graph data being ubiquitous in today's interconnected world. Graph based methods including graph classification have emerged as methodology of  choice in numerous applications across various domains, including:

1. Bioinformatics: Classifying protein-protein interaction networks or gene regulatory networks can provide insights into disease mechanisms and aid in drug discovery. In fact, the most well-known success story of graph neural networks is the discovery of antibiotics to treat drug-resistant diseases, widely reported in early 2020.


2. Social Network Analysis: Categorizing social networks can help identify communities, detect anomalies (e.g., fake accounts), and understand information diffusion patterns.

3. Cybersecurity: Classifying computer networks can assist in detecting malicious activities, identifying vulnerabilities, and preventing cyber attacks.

4. Chemistry: Classifying molecular graphs can aid in predicting chemical properties, synthesizing new compounds, and understanding chemical reactions.

How Do We Build a Graph Classifier? 

There are two main approaches that we can use to build graph classifiers: kernel-based methods and neural network-based methods.

1. Kernel-based Methods:

These methods rely on defining similarity measures (kernels) between pairs of graphs, which capture their structural and topological properties. Popular kernel-based methods include the random walk kernel, the shortest-path kernel, and the Weisfeiler-Lehman kernel. Once the kernel is defined, traditional kernel-based machine learning algorithms, such as Support Vector Machines (SVMs), can be applied for classification.

2. Neural Network- based Methods:

These methods typically involve learning low-dimensional representations (embeddings) of the graphs through specialized neural network architectures, such as Graph Convolutional Networks (GCNs) and Graph Attention Networks (GATs). The learned embeddings capture the structural information of the graphs and can be used as input to standard classifiers, like feed-forward neural networks or logistic regression models. For details on GCNs and node embeddings, please visit my earlier post on graph convolutional networks

Both kernel-based and neural network-based methods have their strengths and weaknesses, and the choice depends on factors such as the size and complexity of the graphs, the availability of labeled data, and computational resources. Given that graph neural networks are getting more mileage, we will complete this blog post by going over steps needed for building a GNN classifier.

Steps for Building a GNN Classifier

Dataset

We are going to use the MUTAG dataset which is part of the TUDatasets, an extensive collection of graph datasets and easily accessible in PyTorch Geometric library for building graph applications. The MUTAG dataset is a small dataset of 188 graphs representing two classes of graphs. Each graph node is characterized by seven features. Two of the example graphs from this dataset are shown below.

Two example graphs from MUTAG dataset


We will use 150 graphs for training and the remaining 38 for testing. The division into the training and test sets is done using the available utilities in the PyTorch Geometric. 

Mini-Batching

Due to the smaller graph sizes in the dataset, mini-batching of graphs is a desirable step in graph classification for better utilization of GPU resources. The mini-batching is done by diagonally stacking adjacency matrices of the graphs in a batch to create a giant graph that acts as an input to the GNN for learning. The node features of the graphs are concatenated to form the corresponding giant node feature vector. The idea of mini-batching is illustrated below.


Illustration of mini-batching


Graph Classifier

We are going to use a three-stage classifier for this task. The first stage will consists of generating node embeddings using a message-passing graph convolutional network (GCN). The second stage is an embeddings aggregation stage. This stage is also known as the readout layer. The function of this stage is to aggregate node embeddings into a single vector. We will simply take the average of node embeddings to create readout vectors. PyTorch Geometric has a built-in function for this purpose operating at the mini-batch level that we will use. The final stage is the actual classifier that looks at mapped/readout vectors to learn classification rule. In the present case, we will simply use a linear thresholding classifier to perform binary classification. We need to specify a suitable loss function so that the network can be trained to learn the proper weights.

A complete implementation of all of the steps described above is available at this Colab notebook. The results show that training a GCN with three convolutional layers results in test accuracy of 76% in just a few epochs.

Takeaways Before You Leave

Graph Neural Networks (GNNs) offer ways to perform various graph-related prediction/classification tasks. We can use GNNs make predictions about nodes, for example designate a node as a friend or fraud. We can use them to predict whether a link should exist between a pair of nodes or not in social networks to make friends' suggestions. And of course, we can use GNNs to perform classification of entire graphs with applications mentioned earlier.

Another useful library for deep learning with graphs is Deep Graph Library (DGL). You can find a graph classifier implementation using DGL at the following link, if you like. 




CountVectorizer to HashingVectorizer for Numeric Representation of Text

According to some estimates, the unstructured data accounts for about 90% of the data being generated everyday. A large part of unstructured data consists of text in the form of emails, news reports, social media postings, phone transcripts, product reviews etc. Analyzing such data for pattern discovery requires converting text to numeric representation in the form of a vector using words as features. Such a representation is known as vector space model in information retrieval; in machine learning it is known as bag-of-words (BoW) model.

In this post, I will describe different text vectorizers from sklearn library. I will do this using a small corpus of four documents, shown below.

corpus = ['The sky is blue and beautiful',
'The king is old and the queen is beautiful',
'Love this beautiful blue sky',
'The beautiful queen and the old king']

CountVectorizer

The CountVectorizer is the simplest way of converting text to vector. It tokenizes the documents to build a vocabulary of the words present in the corpus and counts how often each word from the vocabulary is present in each and every document in the corpus. Thus, every document is represented by a vector whose size equals the vocabulary size and entries in the vector for a particular document show the count for words in that document. When the document vectors are arranged as rows, the resulting matrix is called document-term matrix; it is a convenient way of representing a small corpus.

For our example corpus, the CountVectorizer produces the following representation.

from sklearn.feature_extraction.text import CountVectorizer
import pandas as pd
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(corpus)
print(vectorizer.get_feature_names())
Doc_Term_Matrix = pd.DataFrame(X.toarray(),columns= vectorizer.get_feature_names())
Doc_Term_Matrix
['and', 'beautiful', 'blue', 'is', 'king', 'love', 'old', 'queen', 'sky', 'the', 'this']

The column headings are the word features arranged in alphabetical order and row indices refer to documents in the corpus. In the present example, the size of the resulting document-term matrix is 4×11, as there are 4 documents in the example corpus and there are 11 distinct words in the corpus. Since common words such as “is”, “the”, “this” etc do not provide any indication about the document content, we can safely remove such words by telling CountVectorizer to perform stop word filtering as shown below.

vectorizer = CountVectorizer(stop_words='english')
X = vectorizer.fit_transform(corpus)
print(vectorizer.get_feature_names())
Doc_Term_Matrix = pd.DataFrame(X.toarray(),columns= vectorizer.get_feature_names())
Doc_Term_Matrix
['beautiful', 'blue', 'king', 'love', 'old', 'queen', 'sky']

Although the document-term matrix for our small corpus example doesn’t have too many zeros, it is easy to conceive that for any large corpus the resulting matrix will be a sparse matrix. Thus, internally the sparse matrix representation is used to store document vectors.

N-gram Word Features

One issue with the bag of words representation is the loss of context. The BoW representation just focuses on words presence in isolation; it doesn’t use the neighboring words to build a more meaningful representation. The CountVectorizer provides a way to overcome this issue by allowing a vector representation using N-grams of words. In such a model, N successive words are used as features. Thus, in a bi-gram model, N = 2, two successive words will be used as features in the vector representations of documents. The result of such a vectorization for our small corpus example is shown below. Here the parameter ngram_range = (1,2) tells the vectorizer to use two successive words along with each single word as features for the resulting vector representation.

vectorizer = CountVectorizer(ngram_range = (1,2),stop_words='english')
X = vectorizer.fit_transform(corpus)
print(vectorizer.get_feature_names())
Doc_Term_Matrix = pd.DataFrame(X.toarray(),columns= vectorizer.get_feature_names())
Doc_Term_Matrix
['beautiful', 'beautiful blue', 'beautiful queen', 'blue', 'blue beautiful', 'blue sky', 'king', 'king old', 'love', 'love beautiful', 'old', 'old king', 'old queen', 'queen', 'queen beautiful', 'queen old', 'sky', 'sky blue']





It is obvious that while N-gram features provide context and consequently better results in pattern discovery, it comes at the cost of increased vector size.

TfidfVectorizer

Simply using the word count as a feature value of a word really doesn’t reflect the importance of that word in a document. For example, if a word is present frequently in all documents in a corpus, then its count value in different documents is not helpful in discriminating between different documents. On other hand, if a word is present only in a few of documents, then its count value in those documents can help discriminating them from the rest of the documents. Thus, the importance of a word, i.e. its feature value, for a document not only depends upon how often it is present in that document but also how is its overall presence in the corpus. This notion of importance of a word in a document is captured by a scheme, known as the term frequency-inverse document frequency (tf-idf ) weighting scheme.

The term frequency is a ratio of the count of a word’s occurrence in a document and the number of words in the document. Thus, it is a normalized measure that takes into consideration the document length. Let us show the count of word i in document j by tf_{ij}. The document frequency of word i represents the number of documents in the corpus with word i in them. Let us represent document frequency for word i by df_i. With N as the number of documents in the corpus, the tf-idf weight w_{ij} for word i in document j is computed by the following formula:

w_{ij} = tf_{ij}\times(1 + \text{log}\frac{1+N}{1+df_{ij}})

The sklearn library offers two ways to generate the tf-idf representations of documents. The TfidfTransformer transforms the count values produced by the CountVectorizer to tf-idf weights.

from sklearn.feature_extraction.text import TfidfTransformer
transformer = TfidfTransformer()
tfidf = transformer.fit_transform(X)
Doc_Term_Matrix = pd.DataFrame(tfidf.toarray(),columns= vectorizer.get_feature_names())
pd.set_option("display.precision", 2)
Doc_Term_Matrix

Another way is to use the TfidfVectorizer which combines both counting and term weighting in a single class as shown below.

from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer = TfidfVectorizer(ngram_range = (1,2),stop_words='english')
tfidf = vectorizer.fit_transform(corpus)
Doc_Term_Matrix = pd.DataFrame(tfidf.toarray(),columns= vectorizer.get_feature_names())
Doc_Term_Matrix

One thing to note is that the tf-idf weights are normalized so that the resulting document vector is of unit length. You can easily check this by squaring and adding the weight values along each row of the document-term matrix; the resulting sum should be one. This sum represents the squared length of the document vector.

HashingVectorizer

There are two main issues with the CountVectorizer and TdidfVectorizer. First, the vocabulary size can grow so much so as not to fit in the available memory for large corpus. In such a case, we need two passes over data. If we were to distribute the vectorization task to several computers, then we will need to synchronize vocabulary building across computing nodes. The other issue arises in the context of an online text classifier built using the count vectorizer, for example spam classifier which needs to decide whether an incoming email is spam or not. When such a classifier encounters words not in its vocabulary, it ignores them. A spammer can take advantage of this by deliberately misspelling words in its message which when ignored by the spam filter will cause the spam message appear normal.  The HashingVectorizer overcomes these limitations.

The HashingVectorizer is based on feature hashing, also known as the hashing trick. Unlike the CountVectorizer where the index assigned to a word in the document vector is determined by the alphabetical order of the word in the vocabulary, the HashingVectorizer maintains no vocabulary and determines the index of a word in an array of fixed size via hashing. Since no vocabulary is maintained, the presence of new or misspelled words doesn’t create any problem. Also the hashing is done on the fly and memory need is diminshed.

You may recall that hashing is a way of converting a key into an address of a table, known as the hash table. As an example, consider the following hash function for a string s of length n:

$\text{hash(s)} = (s[0] + s[1] \cdot p +s[2]\cdot p^2 +\cdots  + s[n-1] \cdot p^{n-1})\text{ mod }m$

The quantities p and m are chosen in practice to minimize collision and set the hash table size. Letting p = 31 and m = 1063, both prime numbers, the above hash function will map the word “blue” to location 493 in an array of size 1064 as per the calculations:

\text{hash(blue)} = (2 + 12 \cdot 31 + 21\cdot 31^2 + 5\cdot 31^3)\text{ mod 1063} = 493\text{, }

where letter b is replaced by 2, l by 12, and so on based on their positions in the alphabet sequence. Similarly, the word “king” will be hashed to location 114 although “king” comes later than “blue” in alphabetical order.

The HashingVectorizer implemented in sklearn uses the  Murmur3 hashing function which returns both positive and negative values. The sign of the hashed value is used as the sign of the value stored in the document-term matrix. By default, the size of the hash table is set to 2^{20}; however, you can specify the size if the corpus is not exceedingly large. The result of applying HashingVectorizer to our example corpus is shown below. You will note that the parameter n_features, which determines the hash table size, is set to 6. This has been done to show collisions since our corpus has 7 distinct words after filtering stop words.

from sklearn.feature_extraction.text import HashingVectorizer
vectorizer = HashingVectorizer(n_features=6,norm = None,stop_words='english')
X = vectorizer.fit_transform(corpus)
Doc_Term_Matrix = pd.DataFrame(X.toarray())
Doc_Term_Matrix

You will note that column headings are integer numbers referring to hash table locations. Also that hash table location indexed 5 shows the presence of collisions. There are three words that are being hashed to this location. These collisions disappear when the hash table size is set to 8 which is more than the vocabulary size of 7. In this case, we get the following document-term matrix.

The HashingVectorizer has a norm parameter that determines whether any normalization of the resulting vectors will be done or not. When norm is set to None as done in the above, the resulting vectors are not normalized and the vector entries, i.e. feature values, are all positive or negative integers. When norm parameter is set to l1, the feature values are normalized so as the sum of all feature values for any document sums to positive/negative 1. In the case of our example corpus, the result of using l1 norm will be as follows.

With norm set to l2, the HashingVectorizer normalizes each document vector to unit length. With this setting, we will get the following document-term matrix for our example corpus.

The HashingVectorizer is not without its drawbacks. First of all, you cannot recover feature words from the hashed values and thus tf-idf weighting cannot be applied. However, the inverse-document frequency part of the tf-idf weighting can be still applied to the resulting hashed vectors, if needed. The second issue is that of collision. To avoid collisions, hash table size should be selected carefully. For very large corpora, the hash table size of 2^{18} or more seems to give good performance. While this size might appear large, some comparative numbers illuminate the advantage of feature hashing. For example, an email classifier with hash table of size 4 million locations has been shown to perform well on a well-known spam filtering dataset having 40 million unique words extracted from 3.2 million emails. That is a ten times reduction in the document vectors size.

To summarize different vectorizers, the TfidfVectorizer appears a good choice and possibly the most popular choice for working with a static corpus or even with a slowing changing corpus provided periodic updating of the vocabulary and the classification model is not problematic. On the other hand, the HashingVectorizer is the best choice when working with a dynamic corpus or in an online setting.